OF TEMPERATURE INVERSIONS ON AIRWAY DISEASE USING AIRS

Julie Wallace, PhD

BACKGROUND

- Previous study on bronchitis and proximity to roads
- Separate study on effect of temperature inversions on air pollution

FIRESTONE INSTITUTE OF RESPIRATORY HEALTH

- Bronchitis quantitatively defined by proportion of various types of white blood cells
- Sputum samples from patients
- Cell counts
 - Type of airway disease (bronchitis)
 - Severity of airway disease

CELL TYPES

- Neutrophils and Macrophages
- White blood cells
- First line of defense against infection
- Respond quickly

It takes two to tango: cigarette smoke partners with viruses to promote emphysema, Rubin M. Tuder, Jeong H. Yun, J. Clin. Invest. 2008; **118**(8):2689

STUDIES

- A few studies suggesting that air pollution caused an increase in neutrophil cells in the airways
 - Nobutomo, K., 1978. Air pollution and cytological changes in sputum.
 Lancet 1: 523-526.
 - Dragonieri, S., Musti, M., Izzo, C., Esposito, L.M., Barbaro, M.P.F., Resta,
 O., Spanevello, A., 2006. Sputum induced cellularity in a group of
 traffic policemen. Sci Total Environ 367: 433-436.
 - Wardlaw, A.J., Silverman, M., Siva, R., Pavrod, I.D., Green, R., 2005.
 Multi-dimensional phenotyping: toward a new taxonomy for airway disease. Clinical and Experimental Allergy 35: 1254:1262.
 - Bosson, J., Pourazar, J., Forsberg, B., Adelroth, E., Sandström, T., Blomberg, A., 2008. Diesel exhaust exposure enhances the ozoneinduced airway inflammation in healthy humans. Eur Respir J 31: 1234-1240.

TEMPERATURE INVERSIONS

- Influenced by Niagara Escarpment
- Proximity to Great Lakes

TEMPERATURE INVERSIONS JUNE 2009

HAZE OVER LAKE ERIE

AIRS TEMPERATURE PROFILES

- Data from GIOVANNI
- AIRS Level 3, version 5,
- AM/PM temperature profiles
- 2004-2006

PATIENT LOCATIONS

CELL COUNTS - STABLE GROUP

- Neutrophil % increased
- Consistent with other studies
- Largest increases in asthma patients

EXACERBATED GROUP

- Macrophages increased on inversion days
- COPD patients
- Different mechanism in the response to air pollution?

MULTIVARIATE STATISTICAL ANALYSES

- Controlling for
 - Smoking
 - Age
 - Medication
 - Temperature and humidity
- Daytime and night-time inversions

MULTIVARIATE RESULTS

	STABLE	EXACERBATED
Dependent Variable	Neutrophils (%)	Macrophages (%)
Continuous Independent variables	IQR change in percent neutrophil (95%CI)	IQR change in percent macrophage (95%CI)
Age (years)	21.1(16.8,25.5)	-1.6(-2.2,-1.2)
Temperature °C	-0.9(-5.3,3.5)	-1.2(-1.6,1.1)
Relative humidity %	-2.3(-6.4,1.8)	-1.2(-1.5,1.2)
Inhaled corticosteroids (µg/day)	1.0(-2.0,4.0)	0(0,0)
Categorical Independent Variables	Change in percent neutrophil (95%CI)	Change in percent macrophage (95%CI)
Smoker versus non-smoker	-1.0(-7.0,4.9)	1.7(1.1,2.7)
Same day inversion versus normal day (AIRS)	12.6 (3.9,21.4)	2.5 (1.3,4.8)

CONCLUSIONS

- Cellular response to temperature inversions identified
 - Increased air pollution
 - Increased allergens
 - Combination
- Mechanism may be different for patients who are stable and exacerbated
- Response occurs in short-term (within hours)
- Interesting the associations of spatial scales from regional/ global to cellular

IMPLICATIONS

- Current environmental conditions not previously considered
- Could not always explain increases in cell counts in stable patients
- Re-think patient diagnoses

 Occurrence of temperature inversions should be added to air quality forecasts and Air Quality Health Indices